BASIC FIELD MEASUREMENTS

Jeannette Griese Oregon State Office Bureau of Land Management February 26, 2008

CLASS OBJECTIVES

- Review basic forestry measurements and tools
- Review plot procedures
- Fixed radius plot
- Variable radius plot
- Combination plot
- Complete field exercise

DISTANCE AND AREA MEASUREMENT

Common Field Techniques:

- Pacing
- Measurement Aids
- Chain
- Measurement Tape
- Electronic distance Measurements
- Rangefinder

PACING

To set your pace:

Accurately measure a pacing course on level ground. Put stakes at each end

Repeatedly pace off the course, counting off the number of paces it takes to complete the distance.

Keep a natural comfortable pace that can be held all day. Don't try to adjust to even standard, but try to count your pace to the course distance

It is usually easier to adopt the number of paces per distance, say 13 paces per 1 chain (66 feet) or 20 paces per 100 feet, than it is to calculate the number of feet per pace

GUNTER CHAIN MEASUREMENTS

1 Chain $=66$ feet
1 Furlong = 10 chains

1 Mile = 5,280 feet

1 Acre $=43,560 \mathrm{ft}^{2}$
1 Acre $=10$ chains 2

1 Acre $=160$ rods 2
1 Mile = 80 chains

MEASUREMENT TAPES

- Tapes are available in various lengths up to 1,000 feet and can be made of various materials
- Hip chains can be considered a form of measurement tape

ANGLE MEASUREMENT

CORRECTION FOR SLOPE

Matter of trigonometry:

- $H D=S D * \cos A$
where $A=$ angle in degrees
Look of conversion on back of clinometer
- HD = SD * cos (arctan A)
where $A=$ angle in decimal percent

SLOPE CORRECTION TABLE

Stupepercent	Corviersiort fartor	Sioperperromit	Cenversimitarter
5	0.99	5 E	Dens
10	0.885	$6 \square$	0.857
15	0.989	62	-8, 0
≥ 10	Diset	64	0.8-2
22	0.8FI	E6	Disms
≥ 4	0197	68	0.827
$\geq \mathrm{E}$	0.858	F0	0.815
28	0.963	F2	0812
$3 \square$	0.58	74	0.804
32	095	FE	$\square 796$
34	0.947	FE	4788
36	0.944	8 B	[7]
3 B	0.935	E2	4773
410	0.828	84	ITES
42	$0 \leq 2$	BEI	DTEH
44	0.15	Er8	[5E1
4 B	0.sme	91	-7.73
48	0.92	42	1736
50	0.8.34	54	0729
52	D.8BT	95	1721
54	0.8-80	38	0714
5 E	0.72	100	4.70

TREE HEIGHT

TREE HEIGHT

Helght on Sloping Grourd (percent) Height $=A-B \times$ Distance

TREE DIAMETER

TREE DIAMETER

FIXED RADIUS PLOT

VARIABLE RADIUS PLOT

Plot Radius Factor $=$ Square Root of 75.6218/BAF
Limiting Distance $=$ Factor for BAF * Diameter
If tree is closer than Limiting Distance it is in plot

VARIABLE RADIUS PLOT

VARIABLE RADIUS PLOT

FIELD ESTIMATE OF RD

Rolationship of Basal Arba \＆Trots／acre or Spacing to Relativo Density

Trebtice is spieling
$\begin{array}{lllllllllllllllllllll}25 & 50 & 75 & 160 & 125 & 150 & 175 & 205 & 35 & 250 & 255 & 300 & 45 & 35 & 35 & 40 & 45 & 450\end{array}$

4	10	11	13	14	14	45	16	樓	17	17	1	is	18	19	\％	19	2	20
60	13	15	17	19	2	21	21	2	23	73	24	24	25	3	26	3	27	27
60	46	19	21	24	24	3	3	27	24	3	3	30	3	31	12	35	31	33
100	19	2	25	27	2	30	31	3	13	4	3	30	3	37	31	$3{ }^{3}$	3	40
12	22	3	21	31	31	4	4	37	＋	3	－12	41	42	4	43	4	4	45
149	25	2	33	3	37	39		42	4	4		\％	47	4	4	4	9	51
16	27	3	＊	3	41	［ ${ }^{4}$		4	4	p	4		3	5	4	3	6	0
185	30	8	39	42	45	47	0		$*$	4	H	0	9	4	5	6	61	62
200	32	3	43	4	4	4	3	4	$*$	7	4	10	61	63	e4	6	6	67
220	35	41	4	49	5	9	4		ep	d	6	e4	0	67	6	6	70	71
245	37	4	42	52	55	5	0	a	4	1	6	6	70	2	73	74	75	76
2%	39	4	9	5	\％	0			co	do			75	10	π	7	0	81
265	42	4	5	5	6	6			7	74	76		79	ω	H_{2}	4	4	4
308	4	5	${ }_{6}$	䉼	4	6		7	7	14	4	6	3	4	\％	8	5	ω
330	48	5	61	5	6	72	75	77	＊	2	4	＊	47	59	0	7	0	9
34	4	57	6	6）	7	3	76	41	6	\％	4	0	01	0	0	＊	夈	ω
38	40	60	0	71	3	W	硡	（4）	b	4	61	9	8	97	9	160	构	108
＊	52	6	4	7	74	㐨	4	襄	01	0	3	b	㐌	101	109	166	105	509
465	4	4	7	7	4	45	4	\％	04	ข	\％	109	100	4	907	409	140	112

FIELD ESTIMATE OF QMD

Rolationship of Basal Aroe \& Treosthere or Spacing to Quadratic Mosan Olametor (Dq).
Trethore A Spuchog

17.1	121	$\underline{5}$	d	77		6.5	61		6	52	4.9	4.8	4	4.4	4	42	40
21.0	14	12.1	105	04	免	79	7.4	70	6.6	63	6.1	d8	56	4	52	6.1	4.9
	13			10	97	92	86		77	73	70	7	5	33	1	5	87
27.1	15	156	135	1	11	102	-	90	D8	82	72	7.5	12	7.0	18	46	4
2	21.6	17,1	144	13	12.	112	155	9	94	49	46	2	7.9	7.7	1.4	72	7.0
	2	$1 \$ 5$	180	14	+		1	10.7	101	47		59	86	8	89	78	7.6
\$43	2	1	17.1	153	1				10	163			0	4	4	4	+1
	2	2	182	16					11.5	1	+	101	37	5	21	84	54
\$3	3	7	19.1	17.							11	$1{ }^{1} 6$	t	.	0	93	60
	2 B	2	7		,					c	126	11.1	7	04	100	0.7	5
4	2	242	210		17.1	146		1		76	12	11.6	2	108	105	2	79
45	3	5	2		1					15	124	121	117	11.	10	d	4
453	5	22	2	20,						,	121	126	121	11	11.3	11.0	10.7
459	497	7	245	810						H1	135	130	125	21	117	11.4	11.1
4	34	280	242	$21 / 2$	494					40	140	134	125	175	121	11.7	11.4
4	351	244	280		0	18.5	7	16.5	58	151	14	130	131	12	125	12.1	11.
514	35	21	287	2	21	104	142	17	162	150	154	143	127	13s	128	125	121
52	37.3	3	$2{ }^{2} 4$	216	215	200	187	178	18.7	153	182	145	14.1	11.6	132	128	124
42	28.3	31.	27	34	22.1	20	121	4	17, 1	163	5.6		145	140	13	131	

