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Statistical Analysis
Objective: Trainees will be able to:
¢ Understand the importance of random sampling

e Use graphs to explore the nature of monitoring
data sets.

¢ Construct confidence intervals around estimates
of population parameters.

» Use significance tests to test for differences
between years in means and proportions:
— For independent samples.
— For dependent (paired) samples.

Understand the assumptions regarding
parametric statistics.

Know about the use of nonparametric statistics,
including resampling, and when their use is
appropriate.

Graph the results of data analysis.

Understand a computer printout from a
statistical program.

Interpret the results of monitoring.
Know about some statistical software programs.




Importance of Random Sampling
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The Literary Digest Poll of 1936

¢ The Literary Digest
was very popular in
the 1920s and 1930s.

* Beginning in 1916,
prior to every
Presidential election
they would poll their
readers to predict the
outcome of the
election.

Until 1936 they had a good record of correctly
predicting election results.

In 1936 they mailed out 10 million
questionnaires to:

— Digest readers

— Registered automobile owners

— Telephone subscribers

Received 2.4 million responses, a very high
number for polls of this nature.

¢ Based on this large
response they
confidently predicted
that Alf Landon would
win in a landslide.

¢ |nstead, it was Franklin
Roosevelt who won in
the largest landslide in
American history to that
time.

This missed call largely led to the demise of the Literary Digest!




How Did the Digest Get it So Wrong?

The magazine committed two major errors:

1.

The sampled population was vastly different from the

target population.

— Only people with higher than average incomes could subscribe
to magazines, own cars, or have telephones in 1936.

— Those are the people who were most likely to vote Republican.

They sampled this population by sending out

questionnaires and asking people to respond.

— This is a volunteer sample: most of those who took the time to
fill out and return the questionnaires had strong feelings against
Roosevelt.

— Most of those who supported Roosevelt didn’t bother to
respond.

4/14/2012

The Gallup Poll

George Gallup was riding high after the 1936
election.

Not only did he correctly predict that Roosevelt
would win, he correctly predicted the results of
the Literary Digest poll within 1 percent! (He said
the Digest would be incorrect by 18 points, when
they were actually incorrect by 19 points).

Both based on a sample of only 3,000 people
(compared to the Digest’s sample of 2.4 million).

Gallup’s Methods

Until 1956 Gallup and other pollsters used a
technique called quota sampling to draw the
sample used to predict the winner of the
election.

— Quota sampling involves dividing the population
to be sampled into groups expected to vote
differently and taking a sample of a specified size
(the quota) for each group.

* For example, quotas would be determined for middle-
class urban women, lower-class rural men, etc.

 Interviewers were then sent out to interview people in
these groups and meet their quotas for each group.




Gallup’s Methods

* Interviewers, however, were not required to take
a random sample from each of these groups;
rather, they sampled in any way that was
convenient (this type of sampling is called a
convenience sample).

— Thus, they might stand on a street corner and poll any
businessman that might happen to walk by until they
met their quota of businessmen. Or, they might skip
the houses of any lower class rural men who had
mean-looking dogs.

— The result of this type of sampling is a sample that is
less representative than a random sample.
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Gallup and the 1948 Election

]

Although this graph
shows that Gallup
started using probability
(= random) sampling
shortly after 1948, other
sources suggest he
didn’t start until just
before the 1956 election.
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Data Exploration
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Normal Probability Plot
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FIGURE 11.2. Normal probability plot of cover data. If data are from a

normal distribution, the plotted values fall along a straight line:
edending from the lower lefi corner toward the upper right
corner. These data approximate a normal distribution.




Normal Probability Plot
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Histogram
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FIGLIRE 11.5. Histogram of same cover values used to
create Figure 114, but with 20 bars inead
of 10 {6 of the 20 bars contain no values).
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Box Plots
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Dit Plot + Box Plot
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Data Analysis
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Two Basic Types of Analysis

* Parameter estimation
— For target/threshold management objectives

e Significance testing
— For change/trend management objectives

Parameter Estimation
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Parameter Estimation
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Significance Testing

Null and Alternative Hypotheses:

H,: There has been no change in the parameter
of interest

H,: There has been a change in the parameter
of interest

Example

* We estimate the density of rare plant species X in
two separate years.

¢ Each year we take a new random sample of forty
0.25 x 5.0m quadrats and count number of plants
in each quadrat.
— Year 1: Mean (x) = 6 plants/quadrat
— Year 2: Mean (x) = 4 plants/quadrat

* We want to determine whether this change is
statistically significant or simply due to random
variation in the population of all possible quadrats.

12



P Value

¢ To do this we must quantify the difference
between these two sample means with a test
statistic.

¢ When the test statistic is sufficiently large we
reject the null hypothesis of no difference
between population means and conclude
there is in fact a difference.
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P Value

But we must specify how large this test
statistic must be for us to reject the null
hypothesis.

To do this we specify a critical or threshold
significance level, or P value.

The P value is the probability of obtaining a
value of the test statistic as large or larger
than the one computed from the data when in
reality there is no difference between the two
populations.

Relationship between Test Statistic and
P Value

Threshold P (P, ..;,) = a = false-change
error rate in sampling objective

Calculated P (P_,) = actual false-change
error rate calculated from sample data

As test statistic? calculated P

This relationship holds true for every test
statistic (e.g., t, F, X?)

13



Pinresh = False Change Error Rate

thres

In developing a sampling objective we’ve
already specified the threshold P value.

Now we just need to conduct the statistical
test and obtain the calculated P value.

If Peyic < Pinresn there is a statistically significant
difference.

If Poic > Pinresn there is no statistically
significant difference.
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Example (cont’d)

Threshold P=0.20

This is the same as the false-change error rate in our
sampling objective,

It means we are willing to accept a 20% chance of
concluding that a change has taken place when it actually
hasn’t.

Calculated P=0.125
There is only a 12.5% chance of committing a false-change
error based on a statistical analysis of our data

We therefore reject Hy,

We conclude that a change has taken place

Threshold P = 0.20
This is the same as the false-change error rate in our
sampling objective.
1t means we are willing to accept a 20%s chance of

concluding that a change has taken place when it actually
hasn't

Caleulated P =025
Now there is a 25% chance of committing a false-change
error based on a statistical analysis of our data
In other words, we will be wrong 25% of the time in
concluding that a change has taken place based on these
data

We therefore fail to reject Hy,
Our calculated false-change emor rate is greater than the
threshold false-change emror rate we have said we are
willing 1o accept

We therefore conclude that no change has taken place

14



Specify false-change error in sampling objective. This is Py, g4 (also called a).

Collect data according to monitoring plan for two or more years.

Calculate degrees of freedom. For comparing two
years this is (n;-1) + (n,-1).

|

Look up cr‘lt‘lcal t value from t table Have computer calculate actual t
at specified a and calculated value from data.
degrees of freedom (or let the
computer do this for you). /

Compare t, to t . If t,. >t thenthe two populations
are significantly different.

|

Quantify the probability of significance with a P value. Computer will give
a P, associated with t,,,.. Comparing P, to Py,.., is equivalent to comparing
te, to t. except P, must be < Py ., in order to declare significance.
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Exercise 1

Testing for a Difference in the
Number of Flowers/Plant in Two
Populations

Significance Tests to Test for the
Difference between Means or
Proportions of Two or More
Independent Samples

15



Independent Sample t Test
(for two samples)

B difference of sample means
standard error of difference of sample means

As t gets larger the P value gets smaller.

The P value is the probability of obtaining a t value
as large or larger than the one observed when in
reality no change has actually taken place.
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Example

Pihresh = 0.10

Calculated t value = 3.21

Sample size (n) = 25 in each of two years
Degrees of freedom (v) = (n-1) + (n-1) = 48

Critical Values of the t distribution

a(2) | 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001
v |a(1)] 025 | 010 | 0.05 | 0025 | 0.01 | 0.005 | 0.0025 | 0.0010 | 0.0005
26 0.684 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.067 | 3.435 | 3.707
27 0.684 | 1314 | 1.703 | 2.052 | 2473 | 2.771 | 3.057 3.421 3.690
28 0.683 | 1313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.047 3.408 3.674
29 0.683 | 1311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.038 3.396 3.659
30 0.683 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.030 3.385 3.646
31 0.682 | 1.309 | 1.696 | 2.040 | 2.453 | 2.744 | 3.022 3.375 3.633
32 0.682 | 1.309 | 1.694 | 2.037 | 2.449 | 2.738 | 3.015 | 3.365 | 3.622
33 0.682 | 1.308 | 1.692 | 2.035 | 2.445 | 2.733 | 3.008 | 3.356 | 3.611
34 0.682 | 1307 | 1.691 | 2.032 | 2.441 | 2.728 | 3.002 3.348 3.601
35 0.682 | 1306 | 1.690 | 2.030 | 2.438 | 2.724 | 2.996 3.340 3.591
36 0.681 | 1.306 | 1.688 | 2.028 | 2.434 | 2.719 | 2.990 3.333 3.582
37 0.681 | 1.305 | 1.687 | 2.026 | 2.431 | 2.715 | 2.985 3.326 3.574
38 0.681 | 1.304 | 1.686 | 2.024 | 2.429 | 2.712 | 2.980 3.319 3.566
39 0.681 | 1.304 | 1.685 | 2.023 | 2.426 | 2.708 | 2.976 | 3.313 | 3.558
40 0.681 | 1303 | 1.684 | 2.021 | 2.423 | 2.704 | 2.971 3.307 3.551
41 0.681 | 1.303 | 1.683 | 2.020 | 2.421 | 2.701 | 2.967 3.301 3.544
42 0.680 | 1.302 | 1.682 | 2.018 | 2.418 | 2.698 | 2.963 3.296 3.538
43 0.680 | 1.302 | 1.681 | 2.017 | 2.416 | 2.695 | 2.959 3.291 3.532
44 0.680 | 1.301 | 1.680 | 2.015 | 2.414 | 2.692 | 2.956 3.286 3.526
45 0.680 | 1.301 | 1.679 | 2.014 | 2.412 | 2.690 | 2.952 | 3.281 | 3.520
46 0.680 | 1.300 | 1.679 | 2.013 | 2.410 | 2.687 | 2.949 | 3.277 | 3515
47 0.680 | 1.300 | 1.678 | 2.012 | 2.408 | 2.685 | 2.946 3.273 3.510
48 0.680 | 1.299 | 1.677 | 2.011 | 2.407 | 2.682 2.943 3.269 3.505
49 0.680 | 1.299 | 1.677 | 2.010 | 2.405 | 2.680 | 2.940 3.265 3.500
50 0.679 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 2.937 3.261 3.496
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Because the calculated t value falls between t
values of 2.943 and 3.269, the P, falls between P
=0.005 and 0.002. By interpolation we estimate
to be = 0.003.

the P,

calc

N\

a(2) | 0.50 | 0.20  0.10 | 0.05

v | (1) | 025 0.10 | 0.05 | 0.025
48 0.680/1.299 |1.677| 2.011 | 2.407 | 2.682 |2.943 3.265| 3.505

0.02 | 0.01 |0.005 0.002| 0.001
0.01 | 0.005 |0.0025 | 0.0010 |0.0005)

Critical value of t for

Pitresn = 0.10 and v = 48.
Any calculated value of t
larger than this critical
value means you reject the
null hypothesis.

Our calculated value of t
from the data (3.21) falls between
these two t values
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Two-tailed vs. One-tailed t Test

Two-tailed hypothesis
H,: The population mean has
not changed.
H,: The population mean has
changed.

If we fail to reject H, we can conclude
there has been no change in either
direction in the population mean; i.e.,
the population has remained
unchanged.

One-tailed hypothesis

H,: The population mean has
not increased

H,: The population mean has
increased.

If we fail to reject H, we can
conclude only that there has been no
increase in the population mean.

We can make no conclusions as to
whether the population mean has
stayed the same or decreased.

What'’s the Advantage of One-tailed
Tests?

 If you're truly only interested in detecting
change in one direction, a one-tailed test is
more powerful to detect that change.

e Why? The t statistic doesn’t have to be as
large:

o(2): 0.20
v a1): 0.05

38 1.304 1.686

Note that the t value to reject H, with a P, = 0.10 only has to be larger than

1.304 for a one-tailed test, as opposed to 1.686 for a two-tailed test.

17



Assessing Site Reclamation/Restoration

Treatment Reference
Area (t) Area (r)

Traditional approach:
H,: Cover, = Cover,

H,: Cover, # Cover,

Problems with traditional approach:

1. Alow power monitoring design would fail to reject H, even when
populations are quite different—this results in ability to declare
success when in fact the treatment has been unsuccessful.

2. A high power monitoring design might reject null hypothesis
even when populations are sufficiently similar to conclude success.

3. This approach doesn’t explicitly state what level of difference
between Cover, and Cover, is acceptable.
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Assessing Site Reclamation/Restoration

Treatment Reference
Area (t) Area (r)

Abetterapproach: | . cover, < 0.8Cover,

H,: Cover,>0.8Cover,

This explicitly states what the success criterion is (cover of treatment
must be greater than 80% of cover of reference area).

. Now only a high power design will allow rejection of H,and the ability
to declare success.

. Analysis would use a one-tailed test (t test if data are continuous, X2
test for binomial data).

This is a one-tailed bioequivalence test. See Manly, Statistics

for Environmental Science and Management, 2001, revised

2nd edition, 2008. Also called non-inferiority test.

I

N

w

Site Restoration Along Tuscarora Pipeline

Only 4 pairs
of plots are

There were
Monitoring
Plots 200 + miles

1. Company wanted to use traditional approach and to treat treatment
plots and reference plots as two independent samples (i.e., compare
the mean of all treatment plots to the mean of all reference plots).

2. This made little sense given the tremendous variation in vegetation
types along the pipeline.

3. We had them change the design to use a one-tailed bioequivalence test
and to treat each treatment and control plot as a pair. A one-tailed
paired-sample statistical test would then be used for analysis.

shown here.

18



Exercise 2:

Understanding the relationship
between the t statistic and P value
from an independent sample t-test
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Analysis of Variance (ANOVA)
(for 3 or more independent samples)

SZ
F = between
SZ
within
S%eween =  between-groups variance: population

variance estimated from sample means

S2.ithn =  Within-groups variance: population
variance estimated as average of sample
variances

ANOVA

¢ Asignificant F statistic tells you only that one or
more of your means is different from the others.
It doesn’t tell you which specific means are
different from one another.

* Various procedures have been developed to
accomplish “mean separation” following an
ANOVA.

— These involve applying various “corrections” to control
for the overall experiment-wise error rate (Threshold
P value).

— Recent papers have questioned the use of these
correction procedures.

19



Bonferroni Correction

¢ One of the most common corrections
applied following an ANOVA is the

Bonferroni correction.

— Following a significant ANOVA, a computer
program will perform t tests on all pairs of
samples.

— The Py, (false-change error rate) for the
ANOVA is divided by the number of t tests to
derive a corrected Py, .., to apply to the results
of each t test.

thres
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How the Bonferroni Correction Works

* For example, if the original P, .., = 0.05 and

the population is sampled in 3 years:

— There are 3 t tests: (1) Year 1 vs. Year 2, (2) Year 1
vs. Year 3, and (3) Year 2 vs. Year 3

— The original Py, of 0.05 is corrected by dividing
by 3: 0.05/3 =0.0167

— Now P_,. must be < 0.0167 in order to declare any
of the differences significant.

What’s Wrong with Applying the
Bonferroni Correction?

¢ It punishes you for collecting additional
information!

¢ Let’s say you collect data in only two years (Year 1
and Year 3) and decide to use a Py, = 0.05. The
mean of year 1 is 7 plants/quadrat and the mean
of year 2 is 3 plants/quadrat.
— You only need one t test so your Py, ., is still 0.05 (i.e.,

no correction is needed).

— The test yields a P, = 0.031, so you conclude a
change has taken place between years.

20



* Now suppose we also sampled in Year 2 and
came up with a mean of 4 plants/quadrat. So we
have the following values:

Year 1 = 7 plants/quadrat
Year 2 = 4 plants/quadrat
Year 3 = 3 plants/quadrat

* The P, for the Year 1 vs. Year 3 comparison is
still 0.031 but because we’ve now done 3 sets of
comparisons we must now compare this to a
Pihresh = 0.0167 and conclude there is no
significant difference between Year 1 and Year 3!
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Another Example of Problems with the
Bonferroni Correction

Table 1. Results of a hypothetical experiment testing the
effects of grazing on ten plant species. Response refers 1o the
difference between grazed (G) and ungrazed (U) plows. *
indicates significance st p<0.05

Plant Specees Response Significance
Grass # 1 G<U 0.45
Grass @2 G=U .67
Grags #1 G=<U 093
Grass #4 GeU 0.25
Grass #5 G>U 053
Forb #1 Gl 0.04*
Forb #2 G=U o.0*
Forb #3 G<U o.0*
Forb #4 Gl 0.01*
Forb #5 GelU 0.0z

Excerpted from:
Moran, M. D. 2003. Arguments for rejecting the sequential Bonferroni in
Ecological studies. Oikos 100: 403-405.

Bonferroni and Other Post-Hoc
Corrections—Don’t Use Them

¢ Because of the problems with the Bonferroni and other
corrections we recommend not using them.

¢ Because comparisons between years are essentially
planned (as opposed to post-hoc, unplanned
comparisons), you are justified in using the
uncorrected P, value.

¢ This also makes the use of the ANOVA to test
differences between 3 or more years unnecessary—
simply use separate t tests (or—depending on the type
of data—other two-sample tests such as the chi-square
test).
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ANOVA Printout from a Statistical

Program
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1991 Vs, 1.8333
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Testing the Difference between Two
Proportions (Independent Samples):
The Chi-Square Test

¢ Used to analyze frequency data when
individual quadrats are the sampling units and
point cover data when individual points are
the sampling units.

— (Even though cover is expressed as a percentage,
cover data are appropriately analyzed by
calculating mean values and using t tests, except
when individual points are the sampling units).

— If frequency data are collected on more than one
species, each species usually analyzed separately.

2 x 2 Contingency Table to Compare

Two Years
2000 2004 Totals
Present 123 (0.31) 157 (0.39) 280 (0.35)
Absent 277 (0.69) 243 (0.61) 520 (0.65)
Totals 400 (1.00) 400 (1.00) 800 (1.00)

« The numbers in parentheses are frequencies of occurrences in 2000
and 2004, and, in the last column, for both years combined.

¢ The chi-square test is conducted on actual numbers of quadrats or
points, not on percentages.

¢ As we'll see below, the percentages are used to determine the
number of quadrats or points to be expected under the null hypothesis.
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Expected Values Under the Null

* The null hypothesis of no
change is the same as
saying the true
proportion is the same in
both years.

* If the true proportion is
the same, then the values
obtained in each year can
be considered estimates
of the same proportion.

¢ Thus we can use the total

4/14/2012

Hypothesis
2000 2004 Totals
Present| 123 157
(0.31) | (0.39) |(0.35)
Absent 277 243 520
(0.69) | (0.61) | ((0.65)
Totals 400 400 800
(1.00) | (1.00) | (1.00)

frequencies in the right
hand column of the
contingency table to
determine the expected
values under the null.

Expected Values Under the Null
Hypothesis

Thus, in both 2000 and 2004, 0.35 x 400

quadrats, or 140 quadrats (or points) would
be expected to contain the species, and 0.65 x
400 quadrats, or 260 quadrats (or points)
would be expected to not contain the species.

2000 2004 Totals
Present 140 140 280
Absent 260 260 520
Totals 400 400 800

Chi-Square Test

X2=3

©-E)

E

Where: X2 = the chi -square statistic

> = summation symbol

O = number observed
E = number expected

25



Chi-Square Test

Applying this formula to our example we get:

X2 (123-140)° . (277 - 260)? + (157 —140)? + (243-260)°
140 260 140 260
=2.06+1.11+2.06+1.11

=6.34

We then compare the X? value of 6.34 to a table of critical
values of the chi-square statistic (Appendix 5) to see if this
value is sufficiently large to be significant.

Degrees of freedom: v =(r-1)(c-1)
Where: r=number of rows in contingency table
¢ = number of columns in contingency table
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Don’t Use the Yates Correction

¢ Some authors (e.g., Zar 1996) advocate the
Yates correction for a 2 x 2 contingency table:
_g-ly
(I0-E| 2)
E
Other authors (e.g., Steel and Torrie 1980,
Sokal and Rohlf 1981) say it’s overly
conservative and recommend against it.
¢ Simulations by Dan Salzer show it’s not
needed.

Most experts now agree it should not be used.

Counts.
PRESENCES{raws) by YEARS(columns]

:m1| _’ODGI T otad|
Absent

166]  144] 30
Present | 14| 158] 280
Total 300] 500|600

Tabie of Counts and Percents

SYSTAT Printout
of a chi-square

analysis. J2001 2004
Absant 144(24 DO0%)

PRESENCES{rows) by YEARS({columns)

hi-8q. Tests of for and YEARS

Test Statatic [ Value] dif p-Vake|

| 2.230] 1.000] o.072)
re | Z.543] 1.000] D.o8¢]
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Exercise 3

Understanding the relationship
between the X2 statistic and P value
from a chi-square test
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SYSTAT Printout
of Exercise 3
Example 1.

Counts.
PRESENCES{raws) by YEARS(columns]

:m1| .’OOGI T otad|
Absent

166]  144] 30
Presort | 134 158]  280]
Total 500]  500] 600

Tabie of Counts and Percents

PRESENCES{rows) by YEARS({columns)

| 2004

[Totai

144(24 000%)

156(26 000%)

(310051, 86T%)
[280(48 333%)
B00{ 100.0%)

Tests of for

and YEARS

Test Statintic |

Value| dif p-Vake|

| 1.000] o.072]

“5i3] 1.500] o.088]

Larger contingency tables for more

than two years

* Although you can use larger contingency tables to
accommodate more than 2 years (e.g., 2 x 3 table
for 3 years, 2 x 4 table for 4 years, etc.), this
suffers from the same problem as the ANOVA: a
significant result will tell you only that one or
more of the years is different—it won't tell you
which specific years are different from the others.

* For this reason we recommend you conduct pair-
wise chi-square tests (with no Bonferroni or other

correction).
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Permanent Quadrats, Transects,
and Points 1

The Use of Paired-Sample
Significance Tests

1This doesn’t apply to points when the points are the sampling units
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Independent vs. Paired Samples

¢ Independent samples are ones in which different
sets of sampling units are selected randomly (or
systematically with random starts) in each year of
measurement.

* Now consider the case in which sampling units are
randomly selected only in the first year.
— The sampling units are permanently marked.
— Same sampling units measured in subsequent year.

— The two samples are no longer independent—they are
dependent or paired.

Paired t test: Use it when you can

¢ Paired tests, such as the paired t test, are
often much more powerful than independent
sample tests in detecting change.

* The next slide illustrates why this is so.
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Paired Sample t Test

* Anindependent sample t test run on these two
samples yields a calculated t value of 0.617 and
a P value of 0.55—not significant.

¢ Anindependent sample t test is not
appropriately applied to these paired data.
— Even if we could conduct this test, we wouldn’t want

to.

— The paired t test ignores the between-transect
variability and looks at the differences between the
1990 and 1994 values for each of the transects.

transect | coverin | coverin | difference between
number | 1990 1994 1990 and 1994

1 022 020 0.2

2 032 026 -0.06

3 0.06 0.06 0.00

4 086 080 -0.06

5 0.6 0.58 0.04

3 0.54 050 -0.04

7 0.50 032 0.1

8 028 024 -0.04

B 036 0.18 -0.18

10 0.8 0.64 -0.04

mean difference -0.07

standard error 0.02

Paired sample t test results:
Calculated t value: 3.34
Calculated P value: 0.009
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Paired Sample t Test

The higher the degree of positive correlation
between the pairs of sampling units, the more
powerful the test.

Can measure this with a correlation coefficient.

Closer the coefficient is to 1.0 (perfect
correlation), the more powerful the test.

Can apply a paired sample t test even when there
is no correlation—but won’t be as powerful as an
independent sample t test.
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Assessing Site Reclamation/Restoration

Treatment Reference
Area (t) Area (r)

Traditional approach:
H,: Cover, = Cover,

H,: Cover, # Cover,

Problems with traditional approach:

1. Alow power monitoring design would fail to reject H, even when
populations are quite different—this results in ability to declare
success when in fact the treatment has been unsuccessful.

2. A high power monitoring design might reject null hypothesis
even when populations are sufficiently similar to conclude success.

3. This approach doesn’t explicitly state what level of difference
between Cover, and Cover, is acceptable.

Assessing Site Reclamation/Restoration

Treatment Reference
Area (t) Area (r)

A better approach: H,: Cover, < 0.8Cover,

H,: Cover,>0.8Cover,

This explicitly states what the success criterion is (cover of treatment

must be greater than 80% of cover of reference area).

. Now only a high power design will allow rejection of H,and the ability
to declare success.

. Analysis would use a one-tailed test (t test if data are continuous, X?
test for binomial data).

This is a one-tailed bioequivalence test. See Manly, Statistics

for Environmental Science and Management, 2001, revised

2" edition, 2008.

=

N

w
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Site Restoration Along Tuscarora Pipeline

| ~ Only 4 pairs

™ )/_.\ of plots are

. shown here.

There were

Monitoring any more.
Plots 200 + miles

1. Company wanted to use traditional approach and to treat treatment
plots and reference plots as two independent samples (i.e., compare
the mean of all treatment plots to the mean of all reference plots).

2. This made little sense given the tremendous variation in vegetation
types along the pipeline.

3. We had them change the design to use a one-tailed bioequivalence test
and to treat each treatment and control plot as a pair. A one-tailed
paired-sample statistical test would then be used for analysis.
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Repeated Measures ANOVA

* You can compare 3 or more years using a
repeated measures ANOVA.

¢ Just as with the independent sample ANOVA,
a significant result tells you only that 1 or
more years is different from the others.

¢ We recommend you use paired sample t tests
to compare pairs of years.

* No Bonferroni correction is necessary (unlike
guidance in MMPP TR).

Paired Sample Testing for Proportions:
McNemar’s Test

¢ Can be used for frequency data when
quadrats are paired.

¢ Theoretically could be used for paired points,
but this is impractical.

e Uses a 2 x 2 contingency table like the chi
square test for two independent samples but
the data entered into the McNemar table
differs from the independent chi-square table.
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Example
100 quadrats in macroplot in each of 2 years
Pthresh =0.10
Year 1: 60 quadrats have Species X in them
Year 2: 50 quadrats have Species X in them

Year 1 |Year 2| Totals
Permanent quadrats

Present| 60 50 110 McNemar’s X2 = 8.100

Absent | 40 50 90 Py = 0.0044

Totals | 100 | 100 | 200

/1 Year 1

Present Absent
Temporary quadrats

4/14/2012

X2 = 2.020 Present 50 0

- Year
Pene = 0-155 Absent | 10 40

Formula for McNemar’s Test

Year 1
Present Absent
Present 50 0
Absent 10 40

Year 2

, _ (AP—PA)?
™ " AP+ PA

Applying the Finite Population
Correction Factor to the Results of a
Statistical Test

* If you've sampled more than 5% of a
population you should apply the FPC to the
results of a significance test.

e The procedure for applying the FPC depends
on the nature of the test statistic.
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Applying the FPC to Tests that Use the
t Statistic

t statistic from a t test (either an independent sample
or a paired t test) is 1.645 and in each of 2 years you
sampled n = 26 out of a total of N = 100 possible
quadrats.

t

JI-(n/N)

t 1.645

J1-(26/100)

You then need to look up the P value for the appropriate degrees of freedom
in a t table or use the program NCSS Probability Calculator.
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Applying the FPC to Tests that Use the
Chi-square Statistic

X? statistic from either a chi-square or McNemar’s
test is 2.706 and in each of 2 years you
sampled n = 77 out of a total of N = 300 possible

quadrats.
2o XP
1-(n/N)
= 72'706 =3.640
1-(77/300)

You then need to look up the P value for the appropriate degrees of freedom
in a X2 table or use the program NCSS Probability Calculator.

Applying the FPC to Tests that Use the
F Statistic

e See MMPP on pp 250-251 for the formula.

¢ Not shown here because you will probably use
pair-wise t tests in lieu of an ANOVA.
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Exercise 4

Adjust the Chi-Square Statistic Using
the Finite Population Correction
Factor
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Flow Chart of Statistical Tests

Continuous Data

Binomial Data

Independent Paired Independent Paired
Samples Samples Samples Samples
Compare Independent Paired Chi-Square McNemar’s
2 years Sample t test Sample t test Test Test
Compare Pairwise Pairwise Paired Pairwise Pairwise
3 or more Independent Sample t Tests Chi-Square McNemar’s

Sample t Tests Tests
years P

Tests

Exercise 5

What Statistical Procedure Would
You Use?
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Assumptions Regarding the
Statistics Discussed So Far
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Parametric Statistics

¢ Except for the chi-square and McNemar’s
tests, all of the statistics we’ve discussed so far
are parametric statistics.

e Parametric statistics get their name because
they are used to estimate population
parameters such as means and totals.

e ttests, both independent and paired, ANOVA,
and confidence intervals calculated using a t
table are all parametric statistics.

The use of parametric statistics requires that several
assumptions be met, at least approximately (no
monitoring data will meet these assumptions
exactly):

1. That the population being sampled follows a normal
distribution.

¢ This assumption holds

both for the calculation of
confidence intervals and for

the use of t tests and ANOVAs.
(For paired t tests the
differences between sampling
units should come from a
population that follows a normal
distribution.)
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2. That the sampling units are drawn from populations
in which the variances are the same even if the means
change from the first year of measurement to the next.
¢ This assumption, called homogeneity of variances,
applies to significance tests to detect changes in means.
¢ This assumption is rarely met by natural resource
monitoring data—the variance always tends to increase
as the mean increases.

3. That the sampling units are drawn in some random
manner from the population.

e This assumption hold both for the calculation of
confidence intervals and for significance tests.

¢ This assumption must also be met when nonparametric
statistics are used.

How to Check for Normality and
Homogeneity of Variance

¢ Although there are tests of normality, it is often
most effective to look at a graphical analysis of
your data—we showed you the normal
probability plot earlier.

¢ Several tests are available to determine if the
variances of two or more samples are equal, but
none of these is very reliable.
— The most well known, Bartlett’s test, is not

recommended because it is very sensitive to
departures from normality.

— Zar recommends no test be used because ANOVA (and
t test) are robust to departures from this assumption.

What do | do if my data don’t meet the
assumptions of normality and
homogeneity of variances?

1. Nothing. Few if any real data comes from a
population that’s normal, or even quasi normal
(Koch and Link 1970).

— The only consequences of failure to meet the
normality assumption is some distortion of
theoretical risk levels and a reduction in the
efficiency of estimation.

— These problems are far less serious than the failure
to meet the assumption of randomness.

— Both ttests and ANOVAs are robust to moderate
departures from both assumptions.
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2. Increase your sample size. According to
Mattson (1981) a sample size of at least 100
sampling units will ensure against problems
resulting from severe departures from
normality.

— This is conservative.

— Less severe departures from normality will not
require as large a sample.

— We’ll talk more about this shortly.

3. Transform your data. Data are often
converted to another scale prior to analysis in
order to more closely meet the assumption of
normality and homogeneity of variances.

— Covered in many statistical text books.
— Their utility for vegetation monitoring is limited
because of several problems:
e The most common transformations are seldom helpful.
e Estimating means, variances, and confidence intervals
in their transformed scale leads to biased estimates
when data are transformed back to original scale.
¢ May be difficult to understand or apply the results of
statistical analyses expressed in the transformed scale.

4. Use nonparametric statistics. If you are
greatly concerned whether your data meet
the assumptions you can use this class of
statistics that do not require these
assumptions.

— These still require that data be collected
randomly.

— Nonparametric statistics require other
assumptions that are often not discussed.

— They aren’t as powerful as parametric statistics
when the assumptions of normality and
homogeneity of variances are approximately met.

— We’ll talk more about this shortly.
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5. Use statistical analyses based on resampling.
Resampling methods (also called computer-
intensive methods) are becoming more and more
popular with ecologists and other scientists.

— These methods can be used to calculate confidence
intervals and to conduct significance testing.

— Like nonparametric statistics, these methods often
don’t require the assumptions of normality or
homogeneity of variances.

— They are often more powerful than traditional
nonparametric statistics.

—  Will cover in more detail.
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When should | worry about using
parametric statistics?

* |f you follow the guidance in this class you
probably don’t have to worry about using
parametric statistics.

¢ We've already stated that both t tests and
ANOVAs are robust to moderate depatures from
the assumptions of normality and homogeneity
of variances.

— There is a t test that can be used that allows for

differences in variances (see pooled vs. separate
variance t test paper in Statistics section).

* MMPP (page 253) gives some rules of thumb.

A Small Experiment

* | created a simulated population of 4000 observations.

¢ The population follows an exponential distribution.

* Pop mean =0.995

* Pop SD =0.962 e R

* Note large # of small
values and long tail to
right caused by a small #
of large values (one value
is 8, more than 8 times :
the SD) L —

G 200 |00
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Figure 14. Box plot of the exponential distribution shown in Figure 13. There are so
many outliers, it is impossible to tell the near outliers from the far outliers.
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Table 1. Resuls from = lation of

uaking
program RESAMPLING STATS (Bruce 1993). X
The i 5 0.96243. =% i the wsual
by multiplying the sample by the critk . Tea em (wi from the simelaced
population for sample sizes of 10, 20, 30, 50, 100, 150, asd 200. The e mean feil cutside the lower confidence limit with probability kcss
fihen musch = the i

o s level, bowever, was wery close 10 the insended 95 level with 2
sample sice of 100 and reasonably close with a sumple size of 50. izes o 150 d ¥

arges, e the trus mean more tan 2.5% of the time. These results are
consisicat with what coc would cxpect whes sampling » population widh & very loeg tail fo the right (Cochran 1977-39-44).

Progoriion of 10,000 Sampies
Higher

Coafidcnce Limit Actaal Alpka Level
4| 10,0863

The central limit theorem at work!

=T T

€ el dfn=tin.

Figure 15, Histograrms of rcass of 1,000 sarmple oy

I Figares 13 asd 14, Sample sizes ave i Sollown: ) =10 bl w30 ) w3l and ) w100
Moe how e
sipe cressen.

The central limit theorem at work!
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Another example of the
central limit theorem

at work. Even the means
of small samples taken
from a uniform
population rapidly
approach normality.
From Johnson (1995).

Nead NeB

Fre 1. Uniform distribation of values, and dissibutions
of means hased on random samples of site N = 2, 4, ssd §

daribution can rapidly spprosck sarmalily.
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»
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Nonparametric Statistics

¢ Chi-square and McNemar’s tests are

nonparametric.

¢ Parametric statistics estimate means and

standard deviations, and/or conduct significance

tests on means with formulas employing
standard deviations.

— Cl’s around means and population totals are

calculated using the standard deviation (converted to
a standard error by dividing by the sample size) and

therefore involve parametric statistics.
— t tests and ANOVAs are parametric procedures.

Populations with a high
positive skew are rather
common in biology.

Height of shrubs | _»
following a wildfire

02 L4 16

shrub heighe (M}

FIGURE 1113, Histogram of thrub heights on which i

superimpowed 3 nomal smoothing curve. Mote
ot sk, with Lail Lo right. The dotted line is

thwe prweefian, Thee o e liee b the mean.
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Helghe (m) | Rank
Nonparametric procedures 0.35 !
conduct tests on the ranks 040 2
; 0.50 3
of the observations, not on 055 P
5
the values of the observations 075 5
themselves. 0.50 &
1.00 7
This is equivalent to “throwing 1.10 8
away” information. 130 9
4.50 10
5.10 i
TABLE 11.1 Sample of 11
shrub. Heights
ranbeed from
smallest to largest.
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Why not use nonparametric statistics

all the time?

¢ When necessary assumptions approximated
parametric statistics are more powerful than
nonparametric analogues.

¢ Other than the use of resampling techniques
(discussed next) there is no nonparametric
method available to calculate confidence
intervals around means and totals, the two
parameters often of the most interest in

monitoring.

* Nonparametric statistics have their own set of
assumptions that may be problematic.

Table 2 ~ Matrix of statistical significance tests.

and
type of data and purpose of test. Note that for frequency (present-

abseat) data valy ponparametric tests are available.

samgict paired; oot freguency dans

Purpese of Test Parsmetrie Test Test
Teating for change between two years; | Independent sample | Mann-Whimey 1/ sest
wasrgles ; pot frequency | Fiese
Teating for change betwrea rwo peans; | Paired £ iess

Wilkordn's sigaed rank
[

ool Indepesion; Sy dis

Tinting for change betwoon fws yeass;

Chi-aquare st
{2x 1 contingescy mble)

Tieuting for changs betwon fws yoar;
sarmples paired; frequency dam

McNemar's test

Testing for change betwoon dhroe o
e years; iassples independent: sl
froquency data

Anabysis of variance

Krkal-Wallis est

Testing fior change berween Oeee or | Repeased messures | Friedman's test
more yean; same samples mearsred amabysis of variance

each yeur, st frequency da

Testing for change between three or Chi-sqaare bost
mare yoaen; sassples i (2% 23 contingeacy
frequency dam table)

Except for the
Chi-square and
McNemar’s tests
I don’t use any
of these non-
parametric tests.
If I have concerns
about the appro-
priateness of a
parametric test
I'll use a randomi-
zation test.
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Flow Chart of Statistical Tests

Continuous Data Binomial Data
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Independent Paired Independent Paired
Samples Samples Samples Samples
Compare Independent Paired Chi-Square McNemar’s
2 years Sample t test Sample t test Test Test
Compare Pairwise Pairwise Paired Pairwise Pairwise
3 or more Independent Sample t Tests Chi-Square McNemar’s
years Sample t Tests Tests Tests

Statistical Analysis Based on
Resampling
What is resampling?
Example 1: What is the probability of throwing
3 heads in a row?
This is mathematically easy to figure out:

p=[1 1 1)1 0125

2N2\2) 8

Let’s do this empirically using resampling.

5000 samples

DIVIDE k 5000 ki
PRINT &k

REFE/
5000 samples T R

SCORE € ¢

[

COUNT 2 =6k
DMVIDE k $000 kk
PRINT kk
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15000 samples

15000 samples

4/14/2012

Example 2. What is the probability in a class of 25
people, at least two would have the same birthday?

The calculations are much more complex than
those needed to determine the probability of
throwing 3 heads in a row.

But if we do this empirically though resampling,
the concept is relatively easy to understand.

..... - ABEFLING STATS
That e ool 0 s “ths

5000 samples

5000 samples
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* This resampling was conducted using the
standalone version of Resampling Stats.

¢ The standalone version is no longer available,
but has been replaced with an add-in program
for Excel.
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Bootstrapping

* Bootstrapping is sampling with replacement.
— For example, let’s say we put the following
numbersintoahat: 1,2,3,4,5,6,7,8,9,and 10
— We then take a number out of the hat, record it,
and put in back in the hat.
— Thus a possible sample of size 10 could be: 1, 1, 2,
4,4,7,8, 8,10, 10.
e Bootstrapping is often used to calculate
confidence intervals around an estimate.

Bootstapping
Plant Heights

25 Mean =823

4 Median = 10.27
0

a5

4

1.75

45

Parametric 95% confidence inserval: 0874 10 15576

Bootstrap Confidence lmerval

comespoad to th

For this example: &
15.175
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Randomization Tests

¢ Randomization tests (also called permutation
tests) involve sampling without replacement.

¢ They are used in lieu of parametric or
standard nonparametric tests to test whether
means, medians, variances, etc. differ
between populations.

e There is no assumption of normality or
homogeneity of variances.
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Randomization Tests
Eastern horned lizard gl contents (in mg of dry blomass)

Size class | (adult males and yearling females)

256 [ 6 34 0 an
2 “ o 13 3 0
(1) 49 o 0 o L1}
0 u? 7 90 205 0

Size class 2 {adult females)

o 1] 843 n 19 aa
0 163 (1] 3 142

o 286 158 e 100

0 3 443 179 0

Difference between means of the two groups = -108.6

4 of the sample weigh
ass 1 (this is samg
late the differonce in means betwees

cat this a large aumber of times (e.g., 5000 times),
ing track of the difference in means cach time:

Compare the original mean difference to the set of
randomization mean differences.

If the original mean difference looks like a typical value
from the distribution of randomization mean differences
then conclusion is no difference between the two size
classes.

If, however, the original mean difference is unusually large
then the difference is unlikely to have arisen if the null
hypothesis were true, Conclusion is then that there is a
difference between the two size classes.

Results from statistical tests:
ftest: P=0.027

Mann-Whitney non-parametric test: P = 0,080
Randomization test (5000 randomizations): P =0.018
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Graphing the Results of Data

Analysis

4/14/2012

oo
—

FIGURE 1. . Side-by-side bar chart of
mean namber of plants of
the key spe

= per
0.5m q

=
Om quadrat, 3t

confidence intervals.

AN bars represent n = 0

46



3
5
K
5 ’}
g
&
&3
b
¥
3
€2
1
0
1988 1591 1954
year

FIGURE 11.16. Point graph (also called
category plot) of same
data as shown in Figure
.14, Error bars are
90% confidence
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intervals.
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FIGURE 11.17. Point graph of same data
asin Figure 11.16, but with
lines connecting points.
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FIGURE 11.18. Point graph of same data as
in Figure 11.15. Lines connect
the means from each of the
key areas. Error bars are
90% confidence intervals.
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FIGURE 11.19. Notched bax plots of the
number of plants/quadrat in
samples of one hundred 0.5m
x4.0m quadrats. The points
at which the boxes reach full

idth on either side of the

cover of key species

0.2

1990 1994
year
FIGURE 11.20. Point graph of cover data
collected along permanent
transects treated as if each
year was independent.

Error bars are 95%

mean difference in cover of key species

0.15

1994-1990
year
FIGURE 11.21. Point graph showing mean
difference of cover in 10

paired transects of 50
points each. Error bar is
95% confidence interval.
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Pie Charts: Don’t Use Them!

¢ Edward Tufte: Given their low data-density
and failure to order numbers along a visual

dimension, pie charts should never be used.

¢ Pie charts do not allow you to illustrate
uncertainty (i.e., error bars).

¢ There is, however, one (and only one) pie
chart that meets with Tufte’s approval:
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. Pie I have eaten

| Pie 1 have not
yel ealen

The only acceptable pie chart
according to Edward Tufte

Interpreting the Results of
Monitoring
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Interpreting the Results of Monitoring
Target/Threshold Management and
Sampling Objective

v

3
— e

threshald nat met ar aassed

AY
J

( —eom)—
thresheld met, 19
meo—>p
threshald crossed |9

true estimated confi
| parameter threshald ® parameter ( ) in

L 4

Estimated mean and confidence interval

Results of a statistical analysis comparing 1989 and 1990 data on Lomatium cookii
from the Agate Desert Preserve. False-change threshold value = 0.10. Desired
magnitude of change is 30% from the 1989 value.

sample sample statistics observed | results of | calculated minimum
size 1089 1990 change | a statistical |power (1)|  detectable
mean| sd |mean]| sd | (percent)y | test (P) |todetecta| change size
30% change| with a power
from the  [of 0.9, 0t =0.10,|
1989 mean | (% change
from 1989)
50 [3.12 [11.16[1.30 [2.92 |1.82(58%) 0.85 0.13 4.82 (155%)
INTERPRETATION: cannot conclude that a change took place (cannot reject the null
hypothesis). Low confidence in the results due to low power and high minimum
detectable change size. May want to take action as a precautionary step and make
changes in the monitoring design to increase power.

FIGURE 11.24. Example of a post hoc power analysis comparing two years of density data for
Lomatium cookil at the Agate Desert Preserve in Oregon.

Exercise 6

Interpreting the Results of
Significance Tests
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Figure |, Examples of four 95% confidence
imtervals around a mean difference. Examples
1 and 3 tnclude 0, Examples 2 and 3 sre mch
more precise than | and 4. See text for
interpretation,

Mean Difference

pom—— 1'
¥ j l I
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\
J. Di Stefano/ Forest Ecology and Management 187 (2004) 173-183

Response variable
a~
- A

)
L

Ecologically
important effect

Case 1 Case 2

Case 3

=
(—

Case 4 Case 5 *
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