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SPEAKER Bob Holmes: Okay, as I’ve mentioned earlier, this particular lecture, Lesson 4, is a 

linchpin to understanding the rest of the course. We’re probably at the most important concept of 

the entire course. It’s the energy equation. If you don’t understand this, you’ll have trouble the rest 

of the course. So this is maybe a lesson that you wanna listen to and view a couple times to 

make sure that you understand and can master the main points. 

All right, so for the energy equation, we’re gonna apply the conservation of energy. And we’re 

going to--in that application of the conservation of energy, we’re gonna assume that we have an 

ideal fluid. And by ideal, I mean, that there’s no shearing stress. There is no friction. We know 

that in real life there’s friction. As you move through the air, if you were an astronaut coming back 

from outer space in the space shuttle. We know that as you enter the earth’s atmosphere the 

friction from the air on the space shuttle builds up a lot of heat. And so we know that we have 

friction or we have resistance to the flow in any kind of fluid that we have here on the earth. But 

for our purposes today, we’re going to assume that we have an ideal fluid. We have no friction. 

We have no energy loss due to that friction. So if we have an ideal fluid that we were looking at 

the space shuttle coming back into the earth’s atmosphere, there will be no heat buildup. There 

will be no need for those heat tiles on the space shuttle to protect the astronauts inside, because 

we’d have no heat, which is an energy loss from that friction. 

So as we look through this, we’re gonna consider the diagram that you have on the screen. And 

I’m going to consider a one-pound parcel of water, that’s at Point A on my streamline. And you’ll 

notice there I have the bed of the stream and it goes down and we have a drop and then it comes 

back and levels out. Then I’ve drawn a couple streamlines. The top, the uppermost streamline is 

the water surface. That in itself is a streamline. And then I have the streamline where the Parcel A 

is. It’s sort of halfway between the water surface and the bed of the river. 

Now you’ll notice that I have a datum that’s horizontal. And if you’ve ran any kind of stream 

gauging operations, you know that we survey in datum or control. We’ll usually run GPS or levels 

in from a known benchmark and we’ll know exactly how high that--what zero gauge datum is  

 1

 



Energy Equation for an  Ideal Fluid 
 

compared to mean sea level. We have this datum where we call that zero. Everything is 

referenced from that in this particular drawing. You’ll notice that where the stream tube or where 

the one-pound parcel of water is, we’ve got that at Point A, it is a distance ZA above the datum. 

Now I want you to consider that we have three types of energy here in this flowing water. We 

have kinetic energy. We have potential energy, and we have something we call pressure potential 

energy. Now the potential energy is the weight times the distance above the datum. In our 

discussion in this class, we will use the energy units as energy per pound of flowing water. For 

Section A, in the diagram, the potential energy of one pound of water is ZA, okay? That would be 

my potential energy is equal to ZA units. That would be foot pounds per pound of water. Because 

the units on energy are force times the distance. But here in our fluid, we’re always gonna talk 

about per pound of flowing water. So we’ve got foot pounds per pound, or we simply call it feet. 

We have length units for energy. Well, sometimes it’s hard for students to understand how we get 

that, especially if you’re taking physics classes, we express our energy units in length terms, 

because we’re always talking about per unit weight of the fluid or per pound of the fluid. 

The pressure potential energy is that that’s due to what we could do with that fluid. So if we have 

a neutrally buoyant--let’s say that we had a plastic bag and the bag had no weight to it, and it 

contained a pound of fluid and it was at location A. And you’ll notice as it’s animated on your 

graph with no expenditure of energy, we could very simply move that particular partial. It could 

move all the way to the top and we can float that, because it’s neutrally buoyant. That distance 

that it moved, YA, is called the pressure potential energy. Now typically what’s going to happen in 

most of our applications, we’re going to assume that the potential energy is going to be 

referenced to the bed, and our pressure potential is gonna be equal to the depth. That’s what 

typically is going to happen in these lectures.  

Now the effective potential energy for any parcel fluid is the same and equal to the sum of the 

depth and the distance of the bed above the datum, okay? So that’s called our effective potential 

energy. Now, don’t get confused with a lot of these terms. You know, you don’t have to memorize 

all of these. What I’m after in this particular section is you kinda understand the concepts. These  
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things will kinda come, especially as you work the problems and you get used to the flow of 

things. Well, typically for purposes of this derivation, we’re showing you the streamlines. We’re 

showing you the neutral buoyancy, et cetera. But the main concept to take home here is that the 

potential energy is usually gonna be referenced from that zero datum, wherever you establish it at 

to the bed of the river, and that the pressure potential is going to be the depth. That distance from 

the bed of the river to the water surface. 

Now the sum of the pressure head and the head, the head being the potential energy, those are 

other interchangeable terms that we use, again, another source of potential confusion for you. 

That is going to be called the potential--piezometric head. Now for those of you that done 

anything in groundwater applications where you’ve had to measure wells or well heads, we’re 

talking about piezometers. So that would be where you would drive a sand point or you’ve used a 

Geoprobe or drilled a well and you have inserted a plastic pipe with some well screen, et cetera, 

and we’re gonna go out and measure the elevation below the land surface of that water. We 

always call those piezometers. And so that’s piezometric head, which is gonna be the same kind 

of concept. And you can think of maybe if you had at the river was a well or you had a stilling well, 

those are piezometric measurements, that’s a piezometric head. All right, so that’s a concept of 

piezometric head. 

Now the last concept that we wanna discuss here is the kinetic energy. From physics, we know 

that the kinetic energy of a particle of mass, M, and a speed of velocity, V, is defined as one-half 

the mass times the velocity squared. That’s a concept you can look up in any physics book. Now, 

for a pound of water, it has a mass of one over G. Remember from Newton’s Second Law, we’ve 

got the force is equal to mass times acceleration. Now weight being a force and the acceleration 

being the acceleration of gravity in this particular case, we can algebraically manipulate that 

Newton’s Second Law equation and we can say that the mass is equal to one pound divided by 

the acceleration of gravity, G. Again, in our English units, we’re gonna use 32.2 feet per second 

squared as our value for G.  

Now if we do some manipulation there and substitute that value of the mass of one over G into  
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our equation that we’ve said where the kinetic energy is equal to one-half mass times the velocity 

squared, if we insert that one over G in there, we come up with the kinetic energy being equal to 

V squared over two G. This is also known as the velocity head. And as you’ll look on your 

diagram there, you’ll see that we have lines drawn above the water surface at the top that goes 

up to this total head line, which is dotted at the top. And so if we sum up the potential energy plus 

the pressure potential energy plus the kinetic energy, we come up with the total head. And that 

value between the water surface and that total head line is called the velocity head, which is a 

measure of the kinetic energy. 

Now, for an ideal fluid, we said that we had no frictional resistance in the fluid, therefore the total 

energy along a streamline is constant. So if you’re at the water surface and you move from Point 

A down to Point B, and even though you dropped in elevation, we know that that particular 

velocity or that particular energy does not change. That total energy along that streamline is the 

same. So we can write our energy equation where we go from upstream to downstream, and we 

can say that the velocity squared at Section A divided by two G plus the depth of YA plus the 

elevation above the datum to the bed of the river, ZA, is equal to the velocity downstream at 

Section B squared divided by two G plus the depth of location B, which is YB, plus the elevation 

above the datum at location B, which is equal to ZB, and that’s constant. We’ll use this concept 

quite a bit. Now you’re gonna use that to solve the problems. One thing I don’t want you to get 

confused about is that in some of our lectures we’ll use the value of Y to express the depth and 

some we’ll use the value of D. So those sometimes are used interchangeably. And you’ll see that 

in fluid mechanics and open channel textbooks quite often. In this particular case, I’ve used Y. 

We could have used H or--as a value, or D for depth. You always should look at it in the context 

of how it’s being used. 

That concludes our lecture here on the energy equation. 

 


