
Local Energy Losses 

SPEAKER Bob Holmes: Okay, welcome to lecture 14. We’re going to talk about local energy 

losses in natural channels. Now, we’ve been talking in prior lectures, we’ve run through the 

energy equation, we’ve talked about losses that we would have due to friction loss and those that 

are due to other kinds of phenomena such as expansions, contractions, bridge openings, that 

kind of phenomena, we talked about how to deal with that. In this lecture, we’re actually going to 

put it altogether and look at a natural channel and those kinds of things that you’re going to 

involve--that would involved computing, like discharge from high watermarks and that. So this 

lecture here is kinda turning a point to where we’re going to go in subsequent lectures looking at 

interacts. 

Now, some main points for this lecture; earlier on in one of the previous lectures, we talked about 

using friction equations or resistance to flow equations, like Manning’s equation, [PH] Chase’s 

equation, or the Darcy-Wiesbach equation. We’re going to use one of those equations. In this 

case, we’re going to stick with Manning’s equation to actually compute the energy grade line 

slope. We’re also going to look at energy losses through natural channels with other kinds of 

obstructions and disturbances such as the expansion and contraction. We’re going to calculate 

the energy loss in that manner using basically a coefficient. 

If you recall the energy equation, we have the Coriolis coefficient, alpha, times the mean velocity 

at that particular section, squared, divided by two times acceleration of gravity, and that’s 

abbreviated to small letter “g”. That in itself is the kinetic energy. We can add to that, the potential 

energy, which is the capital “Z”, and then we add the pressure potential, which is our depth. And 

as we’ve mentioned many times throughout this course, sometimes we use “Y”, sometimes we 

use capital “D”, sometimes we might even use “H”, but they’re all--you have to look carefully 

when you see the equation in the textbook to make sure that we are talking about depth. But 

most often, we’re always talking about depth. So if we are at Section 1, those would all have a 

subscript “1”, and then we would differentiate that to the other sections, like Section 2 or Section 

3, et cetera. 
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On your screen, you see that we have the energy equation written out there. So we have all the 

terms--the kinetic energy term at Section 1, the pressure potential at Section 1, and the potential 
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energy at Section 1, and then we have an equal sign. And on the right side, we equate it to the 

energy at the next section, and then we add in that head loss term. Remember, we’re dealing 

with the real fluid, not an ideal fluid, so we have to account for the losses. 

Now, those losses are going to be due to one of two things. I’ve just have said previously, either 

due to friction. In that case, then we’re going to calculate the friction slope of that particular length 

or that particular reach, and we’re going to multiply it by the distance of that reach, and I’ll show 

you that in a second. Or we have local disturbances such as the boulders in the area, fallen trees; 

maybe you’ve got a bridge constriction or expansions and other contractions. 

Now, on your screen, you see a drawing, and the top of that figure is looking in plan view. And 

you can see that we have a constriction as we go through, and we have what we’ve already 

covered which is a vena contracta, and so the flow is basically constricting down into a much 

smaller channel. If you look at the lower part of the figure, that’s a plan view where you--or I'm 

sorry, it’s an elevation view or a side view that would show you what the water surface looks like 

and how that drops to that constriction, and also has the energy grade line. You can see that 

Section 1 is well above the constriction, Section 2 corresponds to right at the face of the 

constriction, and then we maintain that same constricted channel all the way through for some 

distance downstream and we don’t even show you an expansion again. So Section 3 is farther 

downstream but it’s in the same constriction as Section 2. 

Now, on your screen now, we actually have defined what the energy equation looks like for this 

particular problem setup. You’ll see that we have the Coriolis coefficient, that’s alpha 1 at Section 

1 times the mean velocity at Section 1, and that quantity is squared--the V1 is squared--divided 

by two times the acceleration of gravity. We then add the pressure potential and the potential 

energy to come up with the energy at Section 1. We then look--and we’re going to write this 

equation all the way to Section 3. So we’re quite aways downstream from the actual opening of 

the constriction. 
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So we’re going to, first of all, on the right side, we look at the total energy at Section 3. So that 

would be the Coriolis coefficient for Section 3, alpha 3, times the mean velocity at Section 3, 
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squared, divided by two times acceleration of gravity, plus the potential energy or the pressure 

potential energy. In this case, we’re abbreviating it “H sub 3”, and then we add on our value for 

the potential energy. 

Now, one thing I want to clarify here is that H1 would be the summation of both the potential 

energy and the pressure potential. So instead of writing Z1 plus Y1, we’ve actually just basically 

lump those into the same term, H1. The same thing on the right side we’re doing at Section 3 

where lumping into that term H3 has both the potential energy component, which would be the Z3 

and the pressure potential, which would be the Y3. So again, don’t get confused here. In this 

particular case, we’re lumping things together. 

Now, because we have the real fluid, we also have to account for the friction losses, and so we 

have “H sub F”, which would signify the loss due to friction from Section 1 to 2. And then because 

we have a little different channel setup, we break that into a separate component for the friction 

loss from Section 2 to 3. As we’ve noted, anytime you’d get some kind of local condition--in this 

case, a contraction--we’re going to account for that by calling it out separately, and we’re going to 

abbreviate that “H sub E.” That is for the contraction loss. 

Now, as I’ve mentioned, we’re going to compute the friction loss, H sub F. We’re going to actually 

compute that as the product of the slope of the energy grade line, S sub F, times that distance, L. 

And for our contraction energy loss, H sub E, we’re going to use it as some percentage of the 

velocity head. 

Now, you can see, Equation 2, that percentage of the velocity head, we break that out by saying, 

“All right, H sub E, which is our contraction loss here is some coefficient, K sub E, times the 

difference in velocity head from Section 1 to Section 3,” and that is shown in absolute bars here 

just so we’d get an absolute difference. We don’t want a negative term in there. That energy loss 

to the contraction is always positive. 
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Now, if we have a sudden contraction, you can see that the coefficient, K sub E, is somewhere 

around 0.5. If we have a contraction that’s much more gradual, we’re going to have a smaller 
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value, so it’s going to be somewhat less depending on the particular type of contraction. And in 

subsequent lectures, we’ll talk about how to assign that value for K sub E. 

Now, if we have a sudden expansion, the K sub E value all of a sudden shoots all the way up to 

one, and that’s because anything that’s in excess--we know when that velocity goes back out to a 

smaller value, remember in continuity, if we assume that the discharge stays the same, the Q is 

equal to the cross section area times the velocity--the mean velocity of that channel. If we go from 

a smaller cross section to a larger cross section and the discharge stays the same, the velocity 

has to decrease in order to keep continuity. So what we have by saying that we have a sudden 

expansion when we go from a smaller channel to a larger channel that we’re basically assuming 

that everything in excess of the velocity difference is lost to this expansion. 

Now, if we have a flood peak usually and we’re not able to get a discharge measurement, we’re 

going to collect high watermarks. And in this particular case, we would use the contraction as a 

way to sort of indirectly measure the discharge. You can think of it as like a discharge meter 

where we’re basically collecting some information here--in this case, it’s high watermarks--and 

then we’re going to use the energy concepts to actually back-calculate or calculate the value for 

the discharge. If we collect those high watermarks at Section 1 and 3 and then we know 

something about the contraction and we know something about the boundary friction--in this 

case, we would be selecting Manning’s in because we’re going to use Manning’s equation--we 

can come up with a way or we can come up with a methodology to calculate or estimate the 

discharge at the peak from these high watermarks. 

Now, if you’ll recall, the Manning’s equation states that the discharge is equal to 1.49 over the 

Manning’s roughness value, N, times the cross-sectional area, times the hydraulic radius to the 

2/3s power, times the friction slope to the 1/2 power. Now, you kinda remember now, we 

abbreviate the conveyance, we kind of shortened these terms up. If I assume that the large “K” is 

this conveyance term, I can equate that to 1.49 over the Manning’s coefficient, N, times the 
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cross-sectional area, A, times the hydraulic radius to the 2/3s power. That in its essence is the 

conveyance, defined as such. We can then plug that in. Instead of having that long-term, we just 

abbreviate the value for “K” or we used the letter “K” in that particular equation, and we can say 
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that the Manning’s equation can be abbreviated to say that the discharge, Q, is equal to the 

conveyance value, K, times the friction slope to the 1/2 power. 

Now, we’re going to plug in for the value for the friction slope. We’re going to actually say that the 

friction slope, S sub F, we’re going to rearrange it algebraically and say, “That’s equal to the 

discharge squared divided by the conveyance term squared.” And so anywhere we have S sub F 

in this equation later on, we’re going to plug in Q squared over K squared, and then we’re going 

to multiply that value times the distance and that will give us the friction loss or the head loss due 

to friction in that particular reach. So if I expand Equation 1 to express these terms--the friction 

loss terms--in the terms of K--or I'm sorry--into the discharge and the conveyance K, and plug 

that in, you can see what Equation 2 becomes. And we’ve got to demonstrate here is Equation 3, 

which says that basically our velocity head--and that’s, again, the alpha, the Coriolis coefficient 

times the velocity at Section 1 squared divided by 2g, plus our head term for basically the 

pressure potential and the potential energy, that’s H sub 1, and then I have the same terminology 

for Section 3 on the right side of the equal sign, now you see the substitutions there. Instead of 

having S sub F times the distance, I plug in the Q squared over K squared to get that value for 

the head loss due to friction. You’ll note again that we’ve broken it out from the friction from 

Section 1 to 2 and the friction from 2 to 3, okay? So those are distinct terms because we might 

have different roughnesses in those reaches. 

Now, I’ve also plugged in--instead of saying H sub E for my contraction loss, we’ve actually 

plugged in an equation for that. In there, we have capital K sub E, which is the coefficient for the 

contraction times the difference in the velocity head from Section 1 to 3. 

Now, this can be solved sometimes directly and sometimes you’re going to have to use indirect 

means or trial and error means. And we’ve talked about our trial and error solutions. So let’s 

discuss the setup for the problem in the textbook. I’m not actually going to work through the  

problem in this particular lecture because we only gave you one problem to work, and I think it’s 

fairly straightforward, but let’s talk about it. 
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On your screen, you’ll see a bridge constriction, and this is what we have for this particular 

problem. We have Section 1, it’s located 40 feet upstream at the bridge opening, and Section 3 is 
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located 15 feet downstream at the bridge opening, but still within the constriction. So it’s very 

much similar to the setup that I showed you earlier in this lecture where we have the plan view of 

the constriction and then the side view. 

Now, for part one of the problem, I want you to compute the peak discharge if you assume that 

the coefficient for the contraction is 0.5; that is, the K sub E is equal to 0.5. The second part of the 

problem, we want you to assume that the peak discharge is 575 cfs, and then I want you to 

calculate the K sub E. Now, on the problem, you’re given a table, and that table gives you the 

characteristics of the channel at Section 1 and Section 3. So you have the water surface 

elevation there at both locations, and that water surface elevation would be equivalent to your H1 

and your H3. So we’ve lumped both the potential energy and the pressure potential at Section 1, 

and that value is 10.81 feet. We’ve also lumped it at Section 3, and that value is 10 feet. So you 

have a fall in the water surface from Section 1 to Section 3 of 0.81 feet if you subtract those two. 

We’re also given the cross-sectional area there and the conveyance terms, and lastly, you’re 

given the alpha coefficient, the Coriolis coefficient, that attributes the correction factor you have to 

have. Remember back from pervious lectures, because we’re stuck with using a mean velocity 

that does not always do a good representation of the kinetic energy, so we have to apply a 

correction factor, and that’s what this alpha is. 

Now, you’re going to use Equation 3 and plug in everything you know from these various tables, 

including end values and things like that, and you’re going to solve either directly for Q, if you 

have the ability to do that. And some calculators and computational mechanisms that you might 

have can do that directly, but you can also do a trial and error solution where you assume a Q, 

calculate everything, and make sure that the two sides of the equal sign match. And that would 

be a trial and error solution. 

Now, I want you to go ahead and try to work the problem. And then we have a flume 

demonstration that will complete our discussion of this lecture. 


